skip to main content


Search for: All records

Creators/Authors contains: "Wong, Dillon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. At partial fillings of its flat electronic bands, magic-angle twisted bilayer graphene (MATBG) hosts a rich variety of competing correlated phases that show sample-to-sample variations. Divergent phase diagrams in MATBG are often attributed to the sublattice polarization energy scale, tuned by the degree of alignment of the hexagonal boron nitride (hBN) substrates typically used in van der Waals devices. Unaligned MATBG exhibits unconventional superconductor and correlated insulator phases, while nearly perfectly aligned MATBG/hBN exhibits zero-field Chern insulating phases and lacks superconductivity. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) to observe gapped phases at partial fillings of the flat bands of MATBG in a new intermediate regime of sublattice polarization, observed when MATBG is only partially aligned (θGr-hBN ≈ 1.65°) to the underlying hBN substrate. Under this condition, MATBG hosts not only phenomena that naturally interpolate between the two sublattice potential limits, but also unexpected gapped phases absent in either of these limits. At charge neutrality, we observe an insulating phase with a small energy gap (Δ < 5 meV) likely related to weak sublattice symmetry breaking from the hBN substrate. In addition, we observe new gapped phases near fractional fillings ν = ±1/3 and ν = ±1/6, which have not been previously observed in MATBG. Importantly, energy-resolved STS unambiguously identifies these fractional filling states to be of single-particle origin, possibly a result of the super-superlattice formed by two moiré superlattices. Our observations emphasize the power of STS in distinguishing single-particle gapped phases from many-body gapped phases in situations that could be easily confused in electrical transport measurements, and demonstrate the use of substrate engineering for modifying the electronic structure of a moiré flat-band material. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Free, publicly-accessible full text available August 17, 2024
  3. We analytically compute the scanning tunneling microscopy (STM) signatures of integer-filled correlated ground states of the magic angle twisted bilayer graphene (TBG) narrow bands. After experimentally validating the strong-coupling approach at ±4 electrons/moiré unit cell, we consider the spatial features of the STM signal for 14 different many-body correlated states and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the Kramers IVC state and its nonchiral U(4) rotations do not exhibit any KD, while the time-reversal-symmetric IVC state does. Our results, obtained over a large range of energies and model parameters, show that the STM signal and Chern number of a state can be used to uniquely determine the nature of the TBG ground state. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)